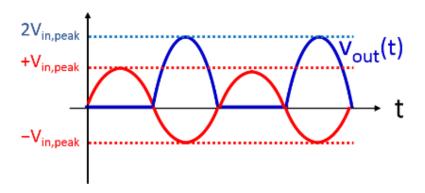

Exercices chapitre 5 – série 7

Exercice I.

Le circuit représenté ci-dessous est identique à celui vu en cours au Chap. 5 (il est simplement dessiné différemment).

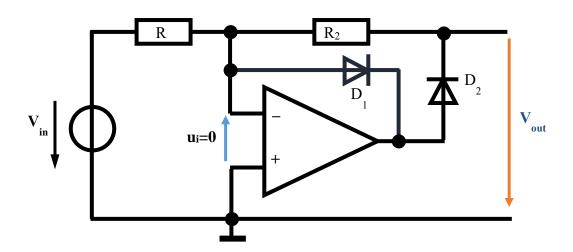
Nous allons procéder par étapes pour établir la relation entre V_{out} et (V_1, V_2) .

- Comment sont polarisés les 2 ampli-op OA1 er OA2 ?
 Qu'en déduisez-vous pour les tensions ui ?
- 2) En tenant compte de ce résultat, exprimez le courant i₁.
- 3) Exprimez la tension V_{BD} et le courant i_3 .
- Nous verrons que pour résoudre le problème, nous avons besoin de la chute de tension V_{BC} . On propose de calculer d'abord la chute de potentiel V_{CD} (utiliser la loi des nœuds).
- 5) En déduire le courant i4 qui circule dans la résistance R₁ 'du haut'.
- 6) En déduire la différence de potentiel V_{AB} (utiliser la loi des nœuds).
- Quel sera le gain différentiel de cet amplificateur ? Quelle sera sa valeur minimale si on considère que R_1 et R_2 sont données, et que la seule résistance variable est R_3 ?

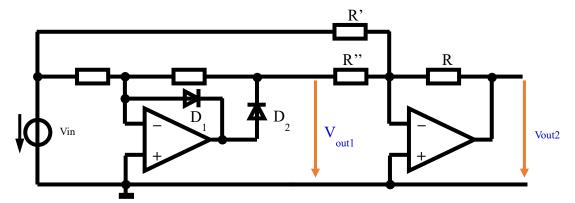

Réponses :

Par exemple :
$$i_5 = V_1 \left(\frac{1}{R_1} + \frac{2}{R_3} \right) - V_2 \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{2}{R_3} \right)$$

$$V_{out} = u_{in_diff} \left(1 + \frac{R_2}{R_1} + \frac{2R_2}{R_3} \right)$$


$$V_{out} = u_{in_diff} \left(1 + \frac{R_2}{R_1} + \frac{2R_2}{R_3} \right)$$

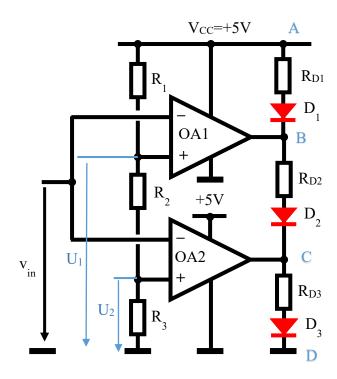
Exercice II


On propose de réaliser un redresseur parfait simple alternance dont la sortie est représentée sur la figure suivante.

1) En adoptant l'architecture vue en cours, dimensionner le circuit (valeur des résistances R et R₂) permettant de réaliser la fonction représentée sur la figure ci-dessus.

2) Sur cette base, dimensionnez les résistances R, R' et R'' du circuit sommateur cidessous permettant de réaliser un redresseur parfait double alternance dont la tension est doublée. $\label{eq:continuous} \begin{array}{l} \underline{Indication} : \text{ exprimer d'abord la relation générale qui donne tension de sortie } V_{out2} \text{ en} \\ \\ \text{fonction de } V_{out1} \text{ et } V_{in} \text{ . Commencez par considérer le cas } V_{in} > 0 \end{array}$

Exercice III


On cherche à déterminer l'état de l'affichage des 3 LEDs en fonction du niveau de la tension d'entrée $V_{\rm in}$.

On donne $R_1 = 180 \text{ k}\Omega$, $R_2 = 220 \text{ k}\Omega$, $R_3 = 100 \text{ k}\Omega$

Ampli op : $V_{OH}=V_{CC}$ et $V_{OL}=0V$.

Les tensions aux bornes des LED en mode direct sont notées U_{D1,2,3}.

- 1) Donnez les valeurs de la tension V_{in} (V_{in1} et V_{in2}) pour lesquelles l'AO1 puis l'AO2 changent leur tension de sortie.
- 2) La tension $V_{\rm in}$ croit progressivement de 0 à 5V. Analysez la manière dont les LED se comportent et calculez le courant qui y circule.
- 3) Quelle sont les valeurs des résistances $R_{D1,2,3}$ pour que le courant dans les LED en mode direct soit $I_F = 2$ mA en supposant les tensions $U_{D1,2,3}$ identiques : $U_D = U_{D1,2,3} = 2$ V.

Réponses:

Cas où
$$V_{in} < V_{in2} < V_{in1}$$

La LED 3 sera la seule allumée

Cas où
$$V_{in2} < V_{in} < V_{in1}$$

La LED 2 sera la seule allumée

Cas où
$$V_{in2} < V_{in1} < V_{in}$$

La LED1 sera la seule allumée

1.5kOhm